If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.9t^2+2t-50=0
a = 0.9; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·0.9·(-50)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{46}}{2*0.9}=\frac{-2-2\sqrt{46}}{1.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{46}}{2*0.9}=\frac{-2+2\sqrt{46}}{1.8} $
| 4x(x+2)+3=(2x+1)(2x+3 | | 2y=3y–10 | | (5+5x-2.5+5+5x-2.5)=(2x+2x+2+2+x+x) | | 1.2x+15=39 | | 6y2+29y+20=0 | | (4x+1000)=50000 | | 10x-1=330 | | 4+(x-5)=4+(×-5) | | 4+x-5=4+×-5 | | 6y+10÷10=7 | | (8x-18)=(5x+4) | | -5/w-2=-5/2w-4-4 | | 3x2+x-243=0 | | 3x-5x+30=-2(x-15) | | -2/y-4=-6/3y-12+2 | | 2.5x-2x=-6+15 | | 2×(x+4)=5×(3x+4) | | 2(h+1)=6h-7 | | 62=35b+2 | | V=35b+2 | | -4(1y+10)=20 | | -1(x-0)=5 | | 2/3y+3=1/5+y | | -5(-3x-1)=-45 | | 16=(32/x)+2x | | 3-8(7-3x)=0 | | 7-4(9x+6)=8 | | 3÷w-2+(8/w)=5/w | | x+32=(90-x) | | 6+2x=8-3x= | | -19=-x-7 | | -16x^2+80x+64=0 |